Shokri等人提出了一种解决分布式学习

  IoT的一大部分应用场景中,输入深度学习的数据是图片或视频。每天,每个人都在用手机的高清摄像头拍摄者图片和视频,除此之外,家居、校园或工厂也在使用智能摄像头。所以,图像识别、分类、目标检测是这类设备的基础应用。

  随着智能手机和可穿戴设备的普及,语音识别也成了人们和自己的设备互动的一种自然而方便的方式。Price等人搭建了一个专用的低功耗深度学习芯片,用于自动语音识别。这种特制芯片的能量消耗要比目前手机上运行的语音识别工具的能量消耗低100倍。

  室内定位在IoT领域有许多应用,例如智能家居、智能校园、或智能医院。例如DeepFi系统,在线下训练阶段,通过深度学习用之前储存的WiFi通道状态信息数据来训练网络权重,在线上定位阶段通过fingerpringTIng来测定用户位置。

  IoT与深度学习的结合也应用在了检测各种生理或心理状态中,例如姿态、活动和情绪。许多IoT应用都在交付的服务中整合了人体姿态估计或活动识别模块,例如智能家居、智能汽车、XBox、健康、运动等等。

  安全和隐私是所有IoT领域应用所关注的一个重要问题。事实上,系统功能的有效性取决于是否能保护机器学习工具和处理过程不受攻击。虚假数据注入(False Data InjecTIon,FDI)是数据驱动系统的一种常见攻击类型。He等人提出用条件DBN从历史数据中提取FDI特征,然后利用这些特征进行实时攻击检测。作为物联网数据和应用程序的一大贡献者,智能手机也面临着黑客攻击的威胁。Yuan等人提出用深度学习框架来鉴别安卓应用中的恶意软件,准确率达到了96.5%。深度机器学习方法的安全性和隐私保护是能否在IoT领域应用的最重要因素。Shokri等人提出了一种解决分布式学习的深度学习模型隐私保护问题的方法。

  智能家居的概念涉及广泛的基于IoT的应用,它有助于提高家庭的能源使用和效率,以及居住者的便利性、生产力和生活质量。如今,家电可以与互联网连接,提供智能服务。例如微软和 Liebherr的一个合作项目,对从冰箱内收集的信息应用了Cortana 深度学习。这些分析和预测可以帮助家庭更好地控制他们的家庭用品和开支,并结合其他外部数据,可用于监测和预测健康趋势。

  智能城市服务跨越多个物联网领域,如交通、能源、农业等。智慧城市的一个重要问题是预测群体移动模式,Song等人开发了基于深度神经网络模型的系统,在城市级别实现了这一目标。Liang等人基于RNN模型搭建了实时群体密度预测系统,利用移动手机用户的通信数据对交通站的群体密度进行预测。废物管理和垃圾分类也是智慧城市的一个相关任务,可以通过基于视觉分类任务的CNN模型来实现自动化。Amato等人基于智能相机和深度CNN开发了检测停车场的使用中和空闲车位的系统。

  消费者与智能电网之间的双向通信是IoT大数据的来源。能源供应商希望学习当地的能源消费模式、预测需求,并根据实时分析做出适当的决定。在智能电网方面,从太阳能、风能或其他类型的自然可持续能源中预测电力是一个活跃的研究领域,深度学习在这一领域的许多应用中越来越多地被使用。

  来自智能交通系统(ITS)的数据是大数据的另一个数据源。Ma等人采用RBM和RNN结构设计了一个交通网络分析系统,模型输入是参与该系统的出租车GPS数据。该系统通过一小时内的累积数据预测交通拥堵的准确率高达88%。ITS也带动了交通标志检测和识别的发展,这一技术在自动驾驶、辅助驾驶系统中都有很重要的应用。除此之外,许多初创公司应用深度学习来完善自动驾驶汽车系统的检测行人、交通标志、路障等任务。

  IoT结合深度学习也在为个人和组织提供医疗和健康方案中得到应用。例如,开发基于移动应用程序的精确测量饮食摄入量的解决方案,可以帮助提升个人健康和幸福感。Liu等人采用CNN开发了识别食物图片和相关信息的系统。用深度学习对医学图片进行分类和分析是医疗领域的研究热点。Pereira等人通过CNN识别手写图片来鉴定早期帕金森症。除此之外,深度学习与IoT的结合在声音异常检测、乳腺血管疾病检测中也得到了应用

  生产健康作物和发展有效的种植方式是健康社会和可持续环境的要求。使用深度神经网络进行植物病害识别是一个可行的解决方案。深度学习也被用于遥感,进行土地和作物的检测与分类。研究显示,使用CNN进行作物识别准确率达到了85%,相比于MLP或随机森林有很大提高。自动耕作中的预测和检测任务也应用了深度学习。

相关文章